
Logic Optimization with Considering Boolean
Relations

Tung-Yuan Lee, Chia-Cheng Wu, Chia-Chun Lin, Yung-Chih Chen§, Chun-Yao Wang

Department of Computer Science, National Tsing Hua University, Hsincu, Taiwan, R.O.C.
§Department of Computer Science and Engineering, Yuan Ze University, Chungli, Taiwan, R.O.C.

Abstract—Boolean Relation (BR) is a many-to-many mapping
between two domains. Logic optimization considering BR can
exploit the potential flexibility existed in logic networks to mini-
mize the circuits. In this paper, we present a logic optimization
approach considering BR. The approach identifies a proper
sub-circuit and locally changes its functionality by solving the
corresponding BR in the sub-circuit without altering the overall
functionality of the circuit. We conducted experiments on a
set of MCNC benchmarks that cannot be further optimized
by resyn2 script in ABC. The experimental results show that
the node counts of these benchmarks can be further reduced.
Additionally, when we apply our approach followed by the resyn2
script repeatedly, we can obtain 6.11% improvements in average.

I. INTRODUCTION

Logic optimization has been studied for many decades,

either for two-level [5][10][11][15], or multi-level logic net-

works [16][17]. Having a completely optimized result in terms

of node count is a challenging problem [8][14]. Hence, many

heuristics have been proposed for dealing with this problem.

Some previous work used Don’t Cares, e.g., External Don’t

Care (XDC), Satisfiability Don’t Care (SDC), or Observability

Don’t Care (ODC) in the networks to optimize the circuits

[4][12][13].

XDCs are impossible input combinations to a gate or

module explicitly specified by a design SPEC. For example,

the patterns 1010 to 1111 (10 to 15 in decimal) from a binary-

coded decimal (BCD) number module are the XDCs to the

next module because they will not occur.

SDCs are impossible local input combinations of a gate in

a Boolean network. Considering a 2-input AND gate, y =
x1 ∧ x2, and a gate S driven by x1, x2, and y. (y, x1, x2)

= (0, 1, 1) is not a possible input pattern to S and thus is an

SDC of gate S.

Considering a Boolean network, y1 = x1 ∧ x2 ∧ x3 and

y2 = y1∧x1. Since y1 cannot be observed at y2 when x1 = 0.

Hence, x1 = 0 is the ODC of y1. As a result, y1 can be

minimized as y1 = (x1 ∧ x2 ∧ x3)∨ (x′1 ∧ x2 ∧ x3) = x2 ∧ x3
when considering its ODC.

In addition to DCs, Boolean Relation (BR) can be also used

to optimize logic networks. Since a BR is a many-to-many

mapping between two domains, it has to be transformed into

a function such that it can be realized in logic networks.

This work is supported in part by the Ministry of Science and Technology
of Taiwan under Grant MOST 106-2221-E-007-111-MY3, MOST 106-2221-
E-155-056, MOST 103-2221-E-007-125-MY3

Fig. 1(a) is a BR between two domains, X and Y . The input

patterns x1x2 = {01, 10} are both mapped to two output

patterns y1y2 = {00, 11}. To realize the logic network, we

have to solve this BR. Fig. 1(b) and Fig. 1(c) are two different

results after solving the BR. The logic functions with respect

to the mappings in Fig. 1(b) and Fig. 1(c) are {y1 = x1 ∧
x2, y2 = x′1 ∧ x′2} and {y1 = x2, y2 = x′1}. Obviously, the

function derived from Fig. 1(c) is more simplified.

(a) (b) (c)

Fig. 1: (a) An example of Boolean Relation. (b)(c) Mappings

after solving the BR.

In fact, how to solve BRs significantly influences the

resultant functions. Several previous works proposed exact

or heuristic optimizations to solve BRs under different cost

functions, e.g., literal count [3][6][7][9][18] or BDD size [1].

In this paper, we propose an approach to optimize logic

networks by exploiting BRs hidden in the network. First, we

identify a many-to-one sub-circuit and a target sub-circuit

divided by a cut as shown in Fig. 2(a) where the target sub-

circuit is the circuit to be minimized. The many-to-one sub-

circuit allows some input patterns to have the same output.

Hence, we use these patterns to construct the hidden BRs in

the target sub-circuit. Then we solve the BRs and obtain a

more simplified target sub-circuit.

We conducted experiments on a set of MCNC benchmarks

that cannot be further optimized by resyn2 script in ABC [2].

The experimental results show that our approach can further

reduce the number of nodes in the benchmarks. When we

apply our approach followed by resyn2 script repeatedly, we

can reduce 6.11% nodes in average.

The main contributions of this work are two-fold:

(1) Our approach identifies the hidden BRs in the network for

logic optimization.

(2) Our approach can reduce the node count of highly opti-

mized circuits.

The rest of the paper is organized as follows. Section II

gives an example of our idea. Section III introduces some

backgrounds and definitions used in this paper. Section IV

describes the proposed approach. Section V shows the exper-

imental results and Section VI concludes this work.

761978-3-9819263-0-9/DATE18/ c©2018 EDAA

II. A MOTIVATIONAL EXAMPLE

(a)

(b) (c)

(d)

Fig. 2: (a) An original circuit. (b) The transition diagram.

(c).The BR and its solution. (d) The optimized circuit.

In this section, we use an example in Fig. 2 to introduce our

idea. Fig. 2(a) is an optimization structure where i1, i2 are

the primary inputs (PIs), c1, c2 form a cut, and o1, o2 are the

primary outputs (POs). In Fig. 2(a), we assume that the target

sub-circuit (dotted square area) and many-to-one sub-circuit

(dashed square area) have been identified.

Fig. 2(b) is the transition diagram of the circuit in Fig. 2(a).

From Fig. 2(b), we observe that two patterns {00, 11} at the

cut produce the same output pattern {00} at the POs, and two

patterns {01, 10} at the PIs produce {00} at the cut. Hence,

if we change the mapping of input patterns {01, 10} from

{00} to {11} at the cut, the overall functionality of the circuit

is still intact. From this observation, we can construct a BR as

shown in the left of Fig. 2(c). After solving the BR as shown

in the right of Fig. 2(c), we can obtain simplified functions

as {c1 = i2, c2 = i′1}. As a result, an optimized circuit with

the minimized target sub-circuit is obtained as shown in Fig.

2(d) where two AND gates and one NOT gate in the original

circuit of Fig. 2(a) are reduced.

III. PRELIMINARIES

A. Boolean Relation
Boolean Relation (BR) is a many-to-many mapping between

two domains. Let B = {0, 1}, a BR R ⊆ X×Y = Bn×Bm,

where X, Y are input and output domains with n and m
dimensions.

A BR R is well-defined if and only if

∀a ∈ Bn, ∃b ∈ Bm such that (a, b) ∈ R.

Since the derived BRs in this work come from Boolean

networks, they are all well-defined BRs.

B. BR Solving
Solving a BR R is to seek a well-defined function f 1 such

that f ⊆ R. We also say that f is a solution of R when we

solve a BR to obtain f . Fig. 3(a) is a tabular representation

showing the BR corresponding to Fig. 1(a). Fig. 3(b) is one

solution of R. However, Fig. 3(c) is not a solution of R
because x1x2y1y2 = 1001 (gray row) /∈ R.

x1x2 y1y2
00 {01}
01 {00, 11}
10 {00, 11}
11 {10}

(a)

x1x2 y1y2
00 01

01 11

10 00

11 10

(b)

x1x2 y1y2
00 01

01 00

10 01

11 10

(c)
Fig. 3: (a) The BR R. (b) One solution of R. (c) Not a solution

of R.

C. Many-to-one Boolean function
A Boolean function f with n input variables is many-to-one

if and only if

∃a1, a2 ∈ Bn, such that f(a1) = f(a2) where a1 	= a2.

The circuit corresponding to a many-to-one Boolean func-

tion is a many-to-one circuit. Fig. 4(a) is the truth table of a

many-to one function f , and Fig. 4(b) is the corresponding

many-to-one circuit.

x1x2 y1y2
00 00

01 10

10 11

11 00

(a) (b)
Fig. 4: (a) The truth table of a many-to-one Boolean function

f . (b) The corresponding many-to-one circuit.

To group the input patterns that have the same output, we

partition the input space into compatible sets. For a function f ,

the compatible set is a maximal subset S of input space such

that ∀ai ∈ S, f(ai) is identical. For example, the compatible

sets of input space in Fig. 4(a) are {00, 11}, {01}, {10} due

to f(00) = f(11). Note that the input space mentioned here

is only corresponding to the considered sub-function.

IV. ALGORITHM

This section presents the proposed algorithm of our ap-

proach. It can be separated into three stages. First, we identify

a many-to-one sub-circuit and generate its compatible sets.

Then, we search for a target sub-circuit from the cut backward

and build the corresponding BR. At last, we solve this BR to

obtain a function, and re-synthesize the function for a more

simplified Boolean network.

A. Extracting Flexibility
In the first stage, we identify a many-to-one sub-circuit and

derive its compatible sets. We start with a node in the circuit,

called starting node. Then, we gradually consider more gates

connected to the starting node to form a many-to-one sub-

circuit. The input of the many-to-one sub-circuit will become

the cut of optimization structure. When the cut size is larger

than a predefined value α, we terminate the process of many-

to-one sub-circuit identification.

762 Design, Automation And Test in Europe (DATE 2018)

(a) (b)
Fig. 5: (a) With a cut-out wire. (b) Without a cut-out wire.

The size of input space of a many-to-one sub-circuit is

2|cut| and that of the output space is 2|output|. The average

number of mapped input patterns at the cut for one output

pattern is 2|cut|
2|output| = 2|cut|−|output|. Hence, the objective of

identification algorithm is to maximize (|cut|− |output|) such

that a many-to-one sub-circuit can be identified with a higher

probability.

For a many-to-one sub-circuit, some wires can be con-

sidered as cut wires and output wires simultaneously, e.g.,

c2, o2 in Fig. 5(a). These wires are called cut-out wires. The

compatible set of a many-to-one sub-circuit will be influenced

when a cut wire becomes a cut-out wire. For example, given

a simple many-to-one sub-circuit with an AND gate, where

o1 = c1 ∧ c2, when c1 and c2 are cut wires solely, the

compatible sets are {11}, {00, 01, 10}. However, if c2 is a

cut-out wire as shown in Fig. 5(a), c2 also influences o2 such

that the compatible sets become {11}, {00, 10}, {01}.

We also use the example in Fig. 5 to demonstrate the process

of many-to-one sub-circuit identification. At the beginning,

the many-to-one sub-circuit is G1 only as shown in Fig. 5(a).

c1, c2 form a cut and the compatible sets are {11}, {00, 10},

{01} for cut c1, c2 as mentioned.

When we further include gate G2 to form a many-to-one

sub-circuit as shown in Fig. 5(b), the cut consists of c1, c2, c3
and the compatible sets are {000, 001, 010, 100, 101},

{011}, {110}, {111}.

As shown in the last example, when we include one more

gate into a many-to-one sub-circuit, we have to update the

compatible sets as well. Here, we propose an efficient method

instead of exhaustive simulation for this update. The update

is categorized into two cases, Case A and Case B, based on

whether the output of newly considered gate is at the original

cut or not.

Case A: The output of newly considered gate is not at the

original cut. For Case A, we further separate it into Case

A1 and A2 based on whether the cut size increases or not.

Fig. 6 illustrates two examples of Case A1 and A2. In these

examples, the newly considered gate is y2 (dotted line). The

cut size of Case A1 increases while that of Case A2 does

not. The many-to-one sub-circuit for Case A1 is shown in

Fig. 6(a). The original compatible sets before updating are

x1x2 = {00, 11}, {01, 10}. Since x3 is added as a new

variable in the cut, the original compatible set {00, 11} is

extended to {00-, 11-}. Then, we AND (∩) this extended

compatible set with the offset {-00, -01, -10} and onset {-

11} of y2, respectively, as shown in Fig. 6(b). That is, {00-,

11-} ∩ {-00, -01, -10} = {00-, 110} and {00-, 11-} ∩ {-11} =

1A function f is well-defined if and only if ∀a ∈ Bn, ∃b ∈
Bm such that (a, b) ∈ f .

{111}. For the compatible set {01, 10}, the updating process

is the same as shown in Fig. 6(b).

The many-to-one sub-circuit for Case A2 is shown in Fig.

6(c). Since the cut is intact after including y2, the compatible

set {00, 11} directly conducts AND operation with the offset

{00, 01, 10} and onset {11} of y2, respectively, for updating,

as shown in Fig. 6(d).

Case B: The output of newly considered gate is at the cut.

For Case B, we also separate it into Case B1 and B2 based on

whether an input of newly considered gate is at the original

cut or not. Fig. 7 illustrates two examples of Case B1 and

Case B2. In these examples, the newly considered gate is at

x1. Any input of newly considered gate for Case B1 is not at

the cut x1, x2 while that for Case B2 is at the cut x1, x2. The

many-to-one sub-circuit for Case B1 is shown in Fig. 7(a). In

Fig. 7(a), the inputs x3, x4 of newly considered gate x1 are

not at the original cut. Hence, we replace the value of x1 with

x3 and x4 during compatible set update. In the example of

Fig. 7(b), for x1 = 0, we replace x1 with the offset of x1, i.e.,

x3x4 = {00, 01, 10}. Then the compatible set x1x2 = {00}
becomes x3x4x2 = {000, 010, 100}. Similarly, for x1 = 1,

we replace x1 with the onset of x1, i.e., x3x4 = {11} and the

compatible set x1x2 = {11} becomes x3x4x2 = {111}.

The many-to-one sub-circuit for Case B2 is shown in Fig.

7(c). In Fig. 7(c), the input x2 of the newly considered gate

x1 is overlapped with the original cut x1, x2. To update the

compatible set, we first add a variable x3 in the compatible

sets as shown in the second column of Fig. 7(d). Since certain

patterns in the extended compatible sets do not comply with

the function of newly considered gate, AND gate, we remove

these patterns from the compatible sets. For example, x1x2x3
= {110} is removed out from the compatible set such that

{11-} becomes {111} as shown in the third column of Fig.

7(d). Finally, we delete the variables not in the new cut, and

the updated compatible sets are x2x3 = {0-}, {11}, {10} as

shown in the last column of Fig. 7(d).

B. Building Boolean Relation
After deriving the compatible sets at the cut of optimiza-

tion structure in the previous stage, we next identify a target

sub-circuit and build the corresponding BR R. To identify

a target sub-circuit, we apply a Breadth-First Search (BFS)

method in the Boolean network from the cut backward. Since

the gates in the target sub-circuit could be removed after

optimization, they can only connect to nodes in the target sub-

circuit itself or wires at the cut. The BFS procedure will stop

at the PIs, the POs, or the wires connecting to gates not in

the target sub-circuit. These stopping points then become the

inputs of the target sub-circuit.

Fig. 8 illustrates an example of identifying a target sub-

circuit from the cut c1, c2. Fig. 8(a) is a Boolean network to

be explored, where c1, c2 form the cut, i1 is a PO, and i2 is

a PI. First, the gate c1 is selected as shown in Fig. 8(b). Then,

the gate c2 is selected based on the BFS method as shown

in Fig. 8(c). Finally, the gate x1 is selected because it only

connects to the target sub-circuit itself as shown in Fig. 8(d).

Design, Automation And Test in Europe (DATE 2018) 763

(a)

x1x2

{00, 11}
{01, 10}

x1x2x3

{00-, 11-}
{01-, 10-}

x1x2x3

{00-, 110}
{111}

{010, 10-}
{011}

(b)

(c)

x1x2

{00, 11}
{01, 10}

x1x2

{00}
{11}

{01, 10}
(d)

∩ {−00, −01, −10}
offset of y2

∩ {−11}
onset of y2

∩ {00, 01, 10}

∩ {11}

Fig. 6: (a) The sub-circuit for Case A1. (b) The update of compatible sets for Case A1. (c) The sub-circuit for Case A2. (d)

The update of compatible sets for Case A2.

(a)

x1x2

{00}
{11}

{01, 10}

x3x4x2

{000, 010, 100}
{111}

{001, 011, 101, 110}
(b)

(c)

x1x2

{00}
{11}

{01, 10}

x1x2x3

{00-}
{11-}

{01-, 10-}

x1x2x3

{00-}
{111}
{010}

x2x3

{0-}
{11}
{10}

(d)

Fig. 7: (a) The sub-circuit for Case B1. (b) The update of compatible sets for Case B1. (c) The sub-circuit for Case B2. (d)

The update of compatible sets for Case B2.

The identification procedure is stopped at i1, i2, and i3 since

i1 is a PO, i2 is a PI, and i3 is connected to one inverter that

does not belong to the target sub-circuit itself.

After identifying the target sub-circuit as shown in Fig.

8(d), we derive the truth table for the target sub-circuit as

shown in Fig. 8(e). With the truth table of target sub-circuit

and the compatible set from the many-to-one sub-circuit, we

can build a BR of the target sub-circuit.

Next, the SDCs, i.e., the illegal input combinations among

the inputs of target sub-circuit, are further computed. Con-

sidering this SDC information will relax the BR such that a

more simplified function could be obtained easily. To compute

SDCs, we also apply a BFS method from each input of target

sub-circuit backward to get a corresponding transitive fanin

cone (TFIC) such as TFICi1 and TFICi3 as shown in Fig.

8(f)2.

When there exist other inputs of the target sub-circuit

in the TFIC of one input, SDCs may occur at the target

sub-circuit. For example, since i2 appears in the TFIC of i3,

TFICi3 , as shown in Fig. 8(f), SDCs may exist. Next, we apply

full simulations for TFICi3 and realize that i2i3 = 11 never

occurs due to TFICi3 = NOR gate. Hence, i1i2i3 = −11 are

the SDCs for the target sub-circuit. To reduce the complexity

of simulation, the number of inputs for each clustered TFIC

is limited to a predefined value β.

Using the compatible set {00, 11}, {01}, {10} from the

many-to-one function in Fig. 4(a), the truth table in Fig. 8(e)

2Since i2 is a PI, TFICi2 is empty.

, and the computed SDCs i1i2i3 = -11 for the target sub-

circuit, we can build a corresponding BR for the target sub-

circuit. Since {00, 11} is a compatible set, we can replace

c1c2 = 00 in Fig. 8(e) with {00, 11}as shown in the gray

rows. We also replace c1c2 with {--} for input patterns in the

SDCs i1i2i3 = 011 and 111 as shown in the dark gray rows.

Fig. 8(g) is the resultant BR for the target sub-circuit after the

replacements.

C. Solving Boolean Relation
Solving a BR influences the target sub-circuit minimiza-

tion. In this stage, we customize a divide-and-conquer based

method proposed in [1] to solve BRs.

The cost function of our approach is the gate count after

synthesis. We use the same BR as shown in Fig. 8(g) to

introduce the method for solving BRs. Note that the objective

of solving BRs is to obtain a smaller target sub-circuit. The

original target sub-circuit is shown in Fig. 8(f) with three gates.

Hence, the upper bound of cost is three. Given the BR R as

shown in Fig. 8(g) where the inputs are i1, i2, and i3 and

the outputs are c1 and c2, to solve R, we first project R onto

each output c1 and c2 independently (denoted as R ↓ ci). The

Karnaugh-maps (K-maps) for R ↓ c1 and R ↓ c2 are shown

in Fig. 9(a). When both 0 and 1 appear in ci for one input

pattern, the corresponding K-map is filled with don’t care “-”.

In this example, c1 = i3 and c2 = i′3 after minimizing the

functions in Fig. 9(a). Since the cost is only one, which is

smaller than three, we further concatenate c1 and c2 to form a

multiple-output function as shown in Fig. 9(b). Unfortunately,

this function is not a correct solution of R. For example, when

764 Design, Automation And Test in Europe (DATE 2018)

i3

c1

c2

cut

x1

i1

i2
x2

(a)

c1

c2

cuti1

i2
x2

x1

i3

(b)()

c1

c2

cuti1

i2
x2

x1

i3

(c)

()

c1

c2

cuti1

i2
x2

x1

i3

(d)
i1i2i3 c1c2

000 01

001 00

010 00

011 10

100 00

101 10

110 01

111 00

(e)

TFICi3

TFIC i1

c1

c2

cuti1

i2
x2

x1

i3

(f)
i1i2i3 c1c2

000 {01}
001 {00, 11}
010 {00, 11}
011 {--}
100 {00, 11}
101 {10}
110 {01}
111 {--}

(g)

c1

c2

cuti1

i2
x2

x1

i3

(h)
Fig. 8: An example of identifying a target sub-circuit and build

the BR of it.

i2i3
i1 00 01 11 10

0

1 1

0

0

- --

- -1

- -

-

c1 = i3

i2i3
i1 00 01 11 10

0

1

1

10

- --

- -

1

- 1

-

c2 = i′3
(a)

i1i2i3 c1c2
000 01

001 10

010 01

011 10

100 01

101 10

110 01

111 10

(b)
Fig. 9: (a) The K-maps for R ↓ c1 and R ↓ c2. (b) The truth

table of the solution of R with three conflicts.

i1i2i3 = 001, it should map to c1c2 = 00 or 11 instead of 10

according to the BR. We call this situation a conflict. Thus, the

original BR is split into two BRs, R1 and R2, from a conflict

input as shown in Fig. 10. Then we repeatedly apply the same

method to solve R1 and R2.

After solving R1, we obtain c1 = i3 and c2 = (i1 ⊕
i2)

′ without any conflicts. Since the corresponding sub-circuit

has only one XNOR gate and the cost is one, we accept this

solution3 and the upper bound of cost is updated as one. When

solving a BR, if the resultant cost is larger than the current

upper bound, we discard the BR without checking conflicts.

i1i2i3 c1c2
000 {01}
001 {00, 11}
010 {00, 11}
011 {--}
100 {00, 11}
101 {10}
110 {01}
111 {--}

(a)

i1i2i3 c1c2
000 {01}
001 {11}
010 {00, 11}
011 {--}
100 {00, 11}
101 {10}
110 {01}
111 {--}

(b)

i1i2i3 c1c2
000 {01}
001 {00}
010 {00, 11}
011 {--}
100 {00, 11}
101 {10}
110 {01}
111 {--}

(c)

R1

R2

Fig. 10: (a) The original BR R. (b)(c) R1, R2 after splitting.

Then we solve R2 and obtain c1 = (i2 ∧ i′3)⊕ i1 and c2 =
i′3. Since the cost of this solution is larger than the current

upper bound of cost, we discard this solution as mentioned

and terminate this stage. The minimized target sub-circuit is

shown in Fig. 8(h).

The flow chart of the proposed approach is shown in

Fig. 11. First, we extract flexibility from a given starting

node by constructing the many-to-one sub-circuit. Then, we

identify the target sub-circuit and build the corresponding

BR considering SDCs. At last, we solve the BR to obtain

a function, and synthesize it for a more simplified target sub-

circuit. We repeat these stages for considering each node as a

starting node to minimize the whole Boolean network.

V. EXPERIMENTAL RESULTS

The proposed approach was implemented in C++. The

experiments were performed on a Linux CentOS 6.7 work-

station with Intel(R) Xeon(R) E5-2650V2 CPU @ 2.60GHz

64GB RAM for a set of MCNC benchmarks [19] represented

by And-Inverter-Graph (AIG) [2]. The parameters for cut size

limit (α) is 6, and for TFIC input limit (β) is 15 in the

experiments.

To demonstrate the ability of exploring optimization

potential of our approach, each benchmark in the experiment

was highly optimized by applying resyn2 script in ABC

[2] repeatedly until the circuit is intact. We conducted two

experiments: One is running our approach once only; the other

is combining our approach with resyn2 script together.

Table I summarizes the experimental results. Column 1

lists the benchmark information including name, the number

of PIs, POs and node count. Column 2 shows the number

of reduced nodes, the percentage of reduced nodes, and the

required CPU time measured in second when running our

approach once only.

Column 3 shows the corresponding results of the second

experiment. In this experiment, we conducted our approach

followed by resyn2 script and repeated the iterations until

3We also accept a solution when its cost is equal to the current upper bound.
This is because restructuring a Boolean network could bring new opportunities
for further optimization.

Design, Automation And Test in Europe (DATE 2018) 765

TABLE I: Experimental results of our approach.

Circuit PI PO |node| Ours (Ours+resyn2)×k
nr nr(%) CPU(s) nr nr(%) k CPU(s)

alu2 10 6 353 2 0.57 217.21 5 1.42 2 378.33
apex6 135 99 604 1 0.17 118.74 6 0.99 2 242.36
i10 257 224 1695 4 0.24 460.51 69 4.07 13 6284.58
i9 88 63 522 3 0.57 163.12 12 2.30 2 363.47

pair 173 137 1261 1 0.08 328.12 28 2.22 4 1132.28
term1 34 10 138 2 1.45 117.49 6 4.35 1 117.49
dalu 75 16 1052 2 0.19 189.19 23 2.19 5 891.61

cordic 23 2 270 1 0.37 114.77 73 27.04 6 453.84
i8 133 81 954 4 0.42 166.55 35 3.67 2 355.14

apex7 49 37 173 4 2.31 37.94 7 4.05 1 37.94
cmb 16 4 47 4 8.51 14.13 4 8.51 1 14.13
x1 51 35 545 2 0.37 171.82 68 12.48 6 948.47

Average - - - 2.5 1.27 174.97 28 6.11 - 934.97

Fig. 11: The flow chart of the proposed approach.

the circuit is intact. The k value in the table is the iteration

number for each benchmark and it varies for different circuits.

For example, for i10 benchmark, our approach cost 460

seconds to reduce four nodes. However, when we conducted

our approach with resyn2 repeatedly, 69 AIG nodes, or 4.07%,

can be reduced after 13 iterations.

According to Table I, we observed that for these highly

optimized benchmarks, our approach still can reduce the

node count, but not many. In fact, we admit that for some

benchmarks, the proposed approach does not work very well

due to highly optimized nature of the benchmark by the

excellent optimization script resyn2. However, by exploiting

hidden BRs to perturb the sub-circuits, the resultant network

could be further optimized by resyn2 script. The node count

reduction is up to 27.04%, and has an average of 6.11%.

VI. CONCLUSION
This paper proposes a logic optimization approach con-

sidering Boolean Relation hidden in the logic networks. To

exploit the hidden BR, we first extract flexibility. Next, we

identify a proper target sub-circuit and build the BR. At

last, we solve the BR to optimize the target sub-circuit. The

experimental results show that our approach can still reduce

node count for a highly optimized circuit. When combining

withe the resyn2 script, we can obtain up to 27.04% reduction

or 6.11% improvements in average.

REFERENCES
[1] D. Baneres, J. Cortadella, and M. kishinevsky, “A recursive paradigm

to solve boolean relations,” in Proc. DAC, pp. 416-421, June 2004.
[2] Berkeley Logic Synthesis and Verification Group, ABC: a

system for sequential synthesis and verification, Available:
https://people.eecs.berkeley.edu/∼alanmi/abc/.

[3] R. Brayton and F. Somenzi. “An exact minimizer for boolean relations,”
in Proc. ICCAD, pp. 316-319, 1989.

[4] Y. C. Chen, and C. Y. Wang, “Fast node merging with dont cares using
logic implications,” in Proc. TCAD, vol. 29, no. 11, pp. 18271832, Nov.
2010

[5] O. Coudert, J. Madre, and H. Fraisse, “A new viewpoint on two-level
logic minimization,” in Proc. DAC, pp. 625-630, June 1993.

[6] A. Ghosh, S. Devadas, and A. Newton, “Heuristic minimization of
boolean relations using testing techniques.” in Proc. TCAD, 1990.

[7] S. Jeong, and F. Somenzi, “A new algorithm for the binate covering
problem and its application to the minimization of boolean relations,”
in Proc. ICCAD, pp. 417-420, 1992.

[8] E. L. Lawler, “An approach to multilevel boolean minimization,” Journal
of the ACM, 1964.

[9] B. Lin and F. Somenzi. “Minimization of symbolic relations,” in Proc.
ICCAD, pp. 88-91, 1990.

[10] E. J. McCluskey, “Minimization of boolean functions,” Bell Syst. tech
J., vol. 35, no. 5, pp. 1417-1444, Nov. 1956.

[11] P. McGeer, J. Sanghavi, and R. K. Brayton, “Espresso-signature: A new
exact minimizer for logic functions,” in Proc. TVLSI, pp. 618-624, 1993.

[12] A. Mishchenko, and R. K. Brayton, “Simplification of non-deterministic
multi-valued networks,” in Proc. ICCAD, November, 2002.

[13] A. Mishchenko, and R. K. Brayton, “A theory of non-deterministic
networks,” in Proc. TCAD, June, 2006.

[14] C. D. Murray, and R. R. Williams, “On the (non) NP-Hardness of
Computing Circuit Complexity,” in Theory of Computer, June, 2017.

[15] W.Quine, “The problem of simplifying truth functions,” American
Mathematical Monthly, vol. 59, no. 8, pp. 521-531, 1952.

[16] H. Savoj, “Improvements in technology independent optimization of
logic circuits,” Proc. of IWLS’97.

[17] H. Savoj, and R. K. Brayton, “The use of observability and external
don’t-care for the simplification of multi-level networks,” Proc. DAC,
pp. 291-301, 1990.

[18] Y.Watanabe, and R. K. Brayton, “Heuristic minimization of multi-valued
relations,” in Proc. TCAD, pp. 1458-1472, Oct. 1993.

[19] S. Yang, “Logic synthesis and optimization benchmarks user guide:
Version 3.0,” Microelectronics Center of North Carolina, 1991.

766 Design, Automation And Test in Europe (DATE 2018)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

